
B. Klin, P. Sobociński (Eds.):
6th Workshop on Structural Operational Semantics (SOS’09)
EPTCS 18, 2010, pp. 77–91, doi:10.4204/EPTCS.18.6

c© G. Dowek & C. Muñoz & C. Rocha
This work is licensed under the
Creative Commons Attribution License.

Rewriting Logic Semantics of a Plan Execution Language ∗

Gilles Dowek
École polytechnique and INRIA

LIX, École polytechnique
91128 Palaiseau Cedex, France

gilles.dowek@polytechnique.fr

César Muñoz
NASA

Langley Research Center
MS. 130, Hampton, VA 23681, USA

cesar.a.munoz@nasa.gov

Camilo Rocha
Department of Computer Science

University of Illinois at Urbana-Champaign
201 Goodwin Ave, Urbana, IL 61801, USA

hrochan2@illinois.edu

The Plan Execution Interchange Language (PLEXIL) is a synchronous language developed by NASA
to support autonomous spacecraft operations. In this paper, we propose a rewriting logic semantics
of PLEXIL in Maude, a high-performance logical engine. The rewriting logic semantics is by itself a
formal interpreter of the language and can be used as a semantic benchmark for the implementation of
PLEXIL executives. The implementation in Maude has the additional benefit of making available to
PLEXIL designers and developers all the formal analysis and verification tools provided by Maude.
The formalization of the PLEXIL semantics in rewriting logic poses an interesting challenge due to
the synchronous nature of the language and the prioritized rules defining its semantics. To overcome
this difficulty, we propose a general procedure for simulating synchronous set relations in rewriting
logic that is sound and, for deterministic relations, complete. We also report on two issues at the
design level of the original PLEXIL semantics that were identified with the help of the executable
specification in Maude.

1 Introduction

Synchronous languages were introduced in the 1980s to program reactive systems, i.e., systems whose
behavior is determined by their continuous reaction to the environment where they are deployed. Syn-
chronous languages are often used to program embedded applications and automatic control software.
The family of synchronous languages is characterized by the synchronous hypothesis, which states that
a reactive system is arbitrarily fast and able to react immediately in no time to stimuli from the external
environment. One of the main consequences of the synchronous hypothesis is that components running
in parallel are perfectly synchronized and cannot arbitrarily interleave. The implementation of a syn-
chronous language usually requires the simulation of the synchronous semantics into an asynchronous
computation model. This simulation must ensure the validity of the synchronous hypothesis in the target
asynchronous model.

The Plan Execution Interchange Language (PLEXIL) [9] is a synchronous language developed by
NASA to support autonomous spacecraft operations. Space mission operations require flexible, efficient
and reliable plan execution. The computer system on board the spacecraft that executes plans is called the
executive and it is a safety-critical component of the space mission. The Universal Executive (UE) [20]

∗Authors in alphabetical order.

http://dx.doi.org/10.4204/EPTCS.18.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

78 Rewriting Logic Semantics of a Plan Execution Language

is an open source PLEXIL executive developed by NASA1. PLEXIL and the UE have been used on mid-
size applications such as robotic rovers and a prototype of a Mars drill, and to demonstrate automation
for the International Space Station.

Given the critical nature of spacecraft operations, PLEXIL’s operational semantics has been formally
defined [8] and several properties of the language, such as determinism and compositionality, have been
mechanically verified [7] in the Prototype Verification System (PVS) [13]. The formal small-step seman-
tics is defined using a compositional layer of five reduction relations on sets of nodes. These nodes are
the building blocks of a PLEXIL plan and represent the hierarchical decomposition of tasks. The atomic
relation describes the execution of an individual node in terms of state transitions triggered by changes
in the environment. The micro relation describes the synchronous reduction of the atomic relation with
respect to the maximal redexes strategy, i.e., the synchronous application of the atomic relation to the
maximal set of nodes of a plan. The remaining three relations are the quiescence relation, the macro
relation and the execution relation which describe the reduction of the micro relation until normaliza-
tion, the interaction of a plan with the external environment, and the n-iteration of the macro relation
corresponding to n time-steps, respectively. From an operational point of view, PLEXIL is more com-
plex than general purpose synchronous languages such as Esterel [2] or Lustre [4]. PLEXIL is designed
specifically for flexible and reliable command execution in autonomy applications.

In this paper, we propose a rewriting logic semantics of PLEXIL in Maude [5] that complements
the small-step structural operational semantics written in PVS. In contrast to the PVS higher-order logic
specification, the rewriting logic semantics of PLEXIL is executable and it is by itself an interpreter of
the language. This interpreter is intended to be a semantic benchmark for validating the implementation
of PLEXIL executives such as the Universal Executive and a testbed for designers of the language to
study new features or possible variants of the language. Additionally, by using a graphical interface [15],
PLEXIL developers will be able to exploit the formal analysis tools provided by Maude to verify prop-
erties of actual plans.

Rewriting logic is a logic of concurrent change in which a wide range of models of computation and
logics can be faithfully represented. The rewriting semantics of a synchronous language such as PLEXIL
poses interesting practical challenges because Maude implements the maximal concurrency of rewrite
rules by interleaving concurrency. That is, although rewriting logic allows for concurrent synchronous
specifications at the mathematical level, Maude executes the rewrite rules by interleaving concurrency.
To overcome this situation, we develop a serialization procedure that allows for the simulation of a
synchronous relation via set rewriting systems. This procedure is presented in a library of abstract set
relations that we have written in PVS. The procedure is sound and complete for the synchronous closure
of any deterministic relation under the maximal redexes strategy.

We are collaborating with the PLEXIL development team at NASA Ames by using the rewriting
logic semantics of PLEXIL to validate the intended semantics of the language against a wide variety of
plan examples. We report on two issues of PLEXIL’s original semantics that were discovered with the
help of the rewriting logic semantics of PLEXIL presented in this paper: the first was found at the level
of the atomic relation for which undesired interleaving semantics were introduced in some computations,
and the second was found at the level of the micro relation for which spurious infinite loops were present
in some computations. Solutions to both issues were provided by the authors, and have been adopted in
the latest version of the PLEXIL semantics.

Summarizing, the contributions presented in this paper are:

• The rewriting logic specification of the PLEXIL semantics.

1http://plexil.sourceforge.net.

http://plexil.sourceforge.net

G. Dowek & C. Muñoz & C. Rocha 79

• A library of abstract set relations suitable for the definition and verification of synchronous rela-
tions.

• A serialization procedure for the simulation of synchronous relations by rewriting, and an equa-
tional version of it in rewriting logic for deterministic synchronous relations.

• The findings on two issues in the design of the original PLEXIL semantics, and the corresponding
solutions that were adopted in an updated version of the language semantics.

Outline of the paper. Background on rewriting logic, and the connection between this logic and Struc-
tural Operational Semantics are summarized in Section 2. In Section 3 we present the library of set rela-
tions, including the soundness and completeness proof of the serialization procedure. Section 4 describes
the rewriting logic semantics of PLEXIL. In Section 5 we discuss preliminary results. Related work and
concluding remarks are presented in Section 6.

2 Rewriting Logic and Structural Operational Semantics

Rewriting logic [11] is a general semantic framework that unifies in a natural way a wide range of models
of concurrency. Language specifications can be executed in Maude, a high-performance rewriting logic
implementation, and benefit from a wide set of formal analysis tools available to it, such as Maude’s LTL
Model Checker.

A rewriting logic specification or theory is a tuple R = (Σ,E ∪A,R) where:

• (Σ,E ∪A) is a membership equational logic theory with Σ a signature having a set of kinds, a
family of sets of operators, and a family of disjoint sets of sorts; E a set of Σ-sentences, which
are universally quantified Horn clauses with atoms that are equations (t = t ′) and memberships
(t : s), with t, t ′ terms and s a sort; A a set of “structural” axioms (typically associativity and/or
commutativity and/or identity) such that there exists a matching algorithm modulo A producing a
finite number of A-matching substitutions; and

• R a set of universally quantified conditional rewrite rules of the form

(∀X) r : t −→ t ′ if
∧

i

ui = u′i∧
∧

j

v j : s j ∧
∧

l

wl −→ w′l

where X is a set of sorted variables, r is a label, t, t ′,ui,u′i,v j,wl and w′l are terms with variables
among those in X , and s j are sorts.

Intuitively, R specifies a concurrent system, whose states are elements of the initial algebra TΣ/E∪A
specified by the theory (Σ,E∪A) and whose concurrent transitions are specified by the rules R. Concur-
rent transitions are deduced according to the set of inference rules of rewriting logic, which are described
in detail in [3] (together with a precise account of the more general forms of rewrite theories and their
models). Using these inference rules, a rewrite theory R proves a statement of the form (∀X) t −→ t ′,
written as R ` (∀X) t −→ t ′, meaning that, in R, the state term t can transition to the state term t ′ in a
finite number of steps. A detailed discussion of rewriting logic as a unified model of concurrency and its
inference system can be found in [11].

We have a one-step rewrite [t]E∪A −→R [t ′]E∪A in R iff we can find a term u ∈ [t]E∪A such that u can
be rewritten to v using some rule r : a −→ b if C ∈ R in the standard way (see [6]), denoted u −→R v,
and we furthermore have v ∈ [t ′]E∪A. For arbitrary E and R, whether [t]E∪A −→R [t ′]E∪A holds is in

80 Rewriting Logic Semantics of a Plan Execution Language

general undecidable, even when the equations in E are confluent and terminating modulo A. Therefore,
the most useful rewrite theories satisfy additional executability conditions under which we can reduce
the relation [t]E∪A −→R [t ′]E∪A to simpler forms of rewriting just modulo A, where both equality modulo
A and matching modulo A are decidable.

The first condition is that E should be terminating and ground confluent modulo A [6]. This means
that in the rewrite theory RE/A = (Σ,A,E), (i) all rewrite sequences terminate, that is, there are no infinite
sequences of the form [t1]A −→RE/A [t2]A · · · [tn]A −→RE/A [tn+1]A · · · , and (ii) for each [t]A ∈ TΣ/A there is
a unique A-equivalence class [canE/A(t)]A ∈ TΣ/A called the E-canonical form of [t]A modulo A such that
there exists a terminating sequence of zero, one, or more steps [t]A −→∗RE/A

[canE/A(t)]A.
The second condition is that the rules R should be coherent [21] relative to the equations E modulo A.

This precisely means that, if we decompose the rewrite theory R = (Σ,E∪A,R) into the simpler theories
RE/A = (Σ,A,E) and RR/A = (Σ,A,R), which have decidable rewrite relations −→RE/A and −→RR/A

because of the assumptions of A, then for each A-equivalence class [t]A such that [t]A −→RR/A [t
′]A we can

always find a corresponding rewrite [canE/A(t)]A −→RR/A [t ′′]A such that [canE/A(t ′)]A = [canE/A(t ′′)]A.
Intuitively, coherence means that we can always adopt the strategy of first simplifying a term to canonical
form with E modulo A, and then apply a rule with R modulo A to achieve the effect of rewriting with R
modulo E ∪A.

The conceptual distinction between equations and rules has important consequences when giving the
rewriting logic semantics of a language L as a rewrite theory RL = (ΣL,EL∪AL,RL). Rewriting logic’s
abstraction dial [12] captures precisely this conceptual distinction. One of the key features of Structural
Operational Semantics is that it provides a step-by-step formal description of a language’s evaluation
mechanisms [14]. Setting the level of abstraction in which the interleaving behavior of the evaluations
in L is observable, corresponds to the special case in which the dial is turned down to its minimum
position by having EL∪AL = /0. The abstraction dial can also be turned up to its maximal position as the
special case in which RL = /0, thus obtaining an equational semantics of the language. In general, we can
make a specification as abstract as we want by identifying a subset R′L ⊆ RL such that the rewrite theory
(ΣL,(EL ∪R′L)∪AL,RL \R′L) satisfies the executability conditions aforementioned. We refer the reader
to [12, 16, 19] for an in-depth presentation of the relationship between structural operational semantics
and rewriting logic semantics, and the use of equations and rules to capture in rewriting logic the dynamic
behavior of language semantics.

The conceptual distinction between equations and rules also has important practical consequences for
program analysis, because it affords massive state space reduction which can make formal analyses such
as breadth-first search and model checking enormously more efficient. Because of state-space explosion,
such analyses could easily become infeasible if we were to use a specification in which all computation
steps are described with rules.

3 A Rewriting Library for Synchronous Relations

When designing a programming language, it is useful to be able to define its semantic relation, to for-
mally prove properties of this relation and to execute it on particular programs. However, defining such a
semantic relation and formally reasoning about it is generally difficult, time consuming, and error-prone.
This would be a major endeavor if it had to be done from scratch for each language. Moreover, since
programming languages tend to evolve constantly, tools must allow reusing parts of former developments
to support rapid yet correct prototyping.

Fortunately, small-step operational semantic relations are, in general, built from simple relations with

G. Dowek & C. Muñoz & C. Rocha 81

a limited number of operations, such as reflexive-transitive extension, reduction to normal form, parallel
extension, etc. As a minimum, the framework should include a library containing the definitions of
these operations and formal proofs of their properties. This will considerably reduce the amount of work
needed to define the semantic relation of particular programming languages and to formally prove their
properties. Defining the semantic relation of synchronous languages requires defining the synchronous
extension of an atomic execution relation, an operation that has been much less studied formally than
other relation operations such as the reflexive-transitive extension or the parallel extension.

We present in this section a first attempt to design a framework for rapid yet correct prototyping
of semantic relations, in particular of synchronous languages. This framework allows one to define
semantic relations, to execute them on particular programs and to formally prove some of their properties
using general theorems about the operations that permit to build relations from relations. We have been
experimenting with this framework using various versions of the PLEXIL language (see Section 4).

The definitions and properties presented in Section 3.1 have been developed in PVS. The Maude
engine is used for executing the semantic relations on particular programs. The full development of the
framework, including the formal semantics of PLEXIL, is available from http://research.nianet.

org/fm-at-nia/PLEXIL.

3.1 Set Relations and Determinism

Let→ be a binary relation on a set T . We say that a ∈ T is a redex if there exists a′ ∈ T such that a→ a′,
and that it is a normal form otherwise. We denote by →0, →n, and →∗, the identity relation, n-fold
composition, and reflexive-transitive closure of→, respectively.

In addition to the above relations, we also define the normalized reduction relation→↓ of→.

Normalized reduction a→↓a′ if and only if a→∗a′ and a′ is a normal form.

Henceforth, we assume that the relation → is defined on sets over an abstract type T , i.e., → ⊆
P(T)×P(T). We define the asynchronous extension of→, denoted 2→, as the congruence closure of

→ and the parallel extension of→, denoted
||→, as the parallel closure of→.

Asynchronous extension a 2→ a′ if and only if there exist sets b and b′ such that b ⊆ a, b 6= ∅, b→ b′

and a′ = (a\b)∪b′.

Parallel extension a
||→ a′ if and only if there exist b1, . . . ,bn, nonempty, pairwise disjoint subsets of a,

and sets b′1, . . . ,b
′
n such that bi→ b′i and a′ = (a\

⋃
i bi)∪

⋃
i b′i.

The definition of a synchronous reduction requires the definition of a strategy that selects the redexes
to be synchronously reduced.

Strategy A strategy is a function mapping elements a ∈P(T) into b1, . . . ,bn, nonempty, pairwise dis-
joint subsets of a such that all bi are redexes for→.

Synchronous extension Let s be a strategy, a s→ a′ if and only if there exist b′1, . . . ,b
′
n such that s(a) =

{b1, . . . ,bn}, bi→ b′i and a′ = (a\
⋃

i bi)∪
⋃

i b′i.

A natural way of defining strategies is via priorities. A priority is a function p that maps elements
a ∈P(T) into natural numbers.

http://research.nianet.org/fm-at-nia/PLEXIL
http://research.nianet.org/fm-at-nia/PLEXIL

82 Rewriting Logic Semantics of a Plan Execution Language

Maximal redex Let a ∈P(T) and let p be a priority function. A nonempty subset b of a is said to be
a maximal redex of a if it is a redex, and for all nonempty subsets c of a such that c is a redex, c 6= b
and c∩ b 6= ∅, we have p(b) > p(c). By construction, the set of maximal redexes of a set are pairwise
disjoint. The maximal redexes strategy is the function that, given a priority function, maps elements
a ∈P(T) into the set of its maximal redexes.

In addition to the definition of the relation operators presented here, our library includes formal proofs
of properties related to determinism and compositionality for abstract set relations. In this paper, we will
focus on determinism as this property is fundamental to the specification of synchronous relations in
rewriting logic.

Determinism A binary relation→ defined on a set T is said to be deterministic if for all a, a′ and a′′ in
T , a→ a′ and a→ a′′ implies a′ = a′′.

Determinism is a stronger property than confluence, i.e., a deterministic relation is also confluent,
but a confluent relation is not necessarily deterministic.

Proposition 3.1 (Determinism of →n, →↓ and s→). If the relation → is deterministic, then so are the
relations→n,→↓, and s→.

In contrast, even if the relation → is deterministic, the relations →∗, 2→ and →‖ are not always
deterministic.

3.2 Executing Semantic Relations

Executing the semantic relation of a programming language is desirable during the design phase of the
language. In particular, it allows the designer of the features to experiment with different semantic
variants of the language before implementing them.

Rewrite systems are a computational way of defining binary relations. Since our formalism is based
on set relations, we consider rewrite systems on an algebra of terms of type T modulo associativity,
commutativity, identity, and idempotence: the basic axioms for the union of sets. We denote the equality
on terms of this algebra by =ACUI . The relation→ defined by a rewrite system R is defined as follows.

Relation defined by a rewrite system a→ b if and only if there exists a rewrite rule l −→ r in R and a
substitution σ such that a =ACUI σ l and b =ACUI σr.

We remark that the previous definition uses the substitution closure of the rewrite system, rather than
the more traditional definition based on the congruence closure. For example, if we consider the rewrite
system

A(x) −→ B(x),

we have that A(0)→ B(0) and A(1)→ B(1). On the other hand, A(0),A(1) is not a redex for→.
The synchronous extension of a relation → challenges the standard asynchronous interpretation of

rewrite systems. Consider again the previous example. The asynchronous extension of→ defined in Sec-
tion 3.1, which indeed encodes the congruence closure, relates A(0),A(1) 2→B(0),A(1) and A(0),A(1) 2→
A(0),B(1). However, it does not relate A(0),A(1) to B(0),B(1), which corresponds to the parallel reduc-
tion of both A(0) and A(1). In this particular case, we have that A(0),A(1) 2→ B(0),A(1) 2→ B(0),B(1).

We remark that if a s→ b, for a strategy s, then a 2→
∗
b. However, in order to select the redexes to

be reduced, we need additional machinery. In particular, we need to keep a log book of redexes that

G. Dowek & C. Muñoz & C. Rocha 83

need to be reduced and redexes that have been already reduced. We propose the following procedure to
implement in an asynchronous rewrite engine, such as Maude, the synchronous extension of a relation
for a strategy.

Serialization procedure Let→ be a relation and s a strategy. Given a term a ∈P(T), we compute a
term b as follows.

1. Reduce the pair 〈
⋃

s(a) ; ∅〉 to a normal form 〈∅ ; a′〉 using the following rewrite system:

〈ai,c ; d〉 −→ 〈c ; a′i,d〉,

where ai→ a′i.

2. The term b is defined as (a\
⋃

s(a))∪a′.

Since a strategy is a set of redexes, and this set is finite, the procedure is well-defined, i.e., it always
terminates and returns a term. However, the procedure is not necessarily deterministic.

In our previous example, we want to apply the procedure to A(0),A(1),B(1) using the maximal
redexes strategy maxp (assuming that all terms have the same priority). Since maxp({A(0),A(1),B(1)})=
{A(0),A(1)}, we have to reduce the pair 〈A(0),A(1) ; ∅〉 to its normal form 〈∅ ; B(0),B(1)〉. Then,
we compute {A(0),A(1),B(1)} \ {A(0),A(1)} ∪ {B(0),B(1)}, which is equal to B(0),B(1). We check
that A(0),A(1),B(1) s→ B(0),B(1).

Theorem 3.2 (Correctness of serialization procedure). The serialization procedure is sound, i.e., if the
procedure returns b from a, then a s→ b. Furthermore, if→ is deterministic, the procedure is complete,
i.e., if a s→ b then the procedure returns b from a.

Proof. Soundness Assume that the procedure returns b = a\
⋃

s(a)∪a′ from a. We have to prove that
a s→ b. Let s(a) = {a1, . . . ,an}, where ai ⊆ a, for 1≤ i≤ n. From the definition of a strategy, the
elements in s(a) are pairwise disjoint. Then, from the procedure, a′ = a′1, . . . ,a

′
n, where ai→ a′i,

for 1≤ i≤ n. Let c⊆ a be such that none of the subsets of c is in s(a). Then, a has the form a =
a1, . . . ,an,c. Hence, b = a′1, . . . ,a

′
n,c. By definition of s→, we have that a1, . . . ,an,c

s→ a′1, . . . ,a
′
n,c.

Completeness In this case, it suffices to note that by Proposition 3.1, if→ is deterministic, then s→ is
deterministic. Therefore, the normal form of 〈

⋃
s(a) ; ∅〉 is unique and the procedure returns a

unique b = a\
⋃

s(a)∪a′. This b is the only term that is related to a in the relation s→.

4 Rewriting Logic Semantics of PLEXIL

The framework presented in Section 3 is abstract with respect to the elements in the set T and the basic set
relation→. If we consider that T is a set of PLEXIL nodes and→ is PLEXIL’s atomic relation, we can
deduce by Proposition 3.1 that, since PLEXIL’s atomic relation is deterministic [7] , PLEXIL’s micro
and quiescence relations are deterministic as well. Therefore, we can use the serialization procedure
presented in Section 3.2 to implement a sound and complete formal interpreter of PLEXIL in Maude.

In this section, we describe in detail the specification of such an interpreter. We only discuss the
atomic and micro relations since they are the most interesting ones for validating the synchronous se-
mantics of PLEXIL. More precisely, we present the rewrite theory RPXL = (ΣPXL,EPXL∪APXL,RPXL),
specifying the rewriting logic semantics for PLEXIL’s atomic and micro relations. We use the deter-
minism property of PLEXIL’s atomic relation to encode it as the computation rules in EPXL because

84 Rewriting Logic Semantics of a Plan Execution Language

it yields a confluent equational specification. Consequently, the serialization procedure for PLEXIL’s
synchronous semantics into rewriting logic can be defined equationally, thus avoiding the interleaving
semantics associated with rewrite rules in Maude. Of course, due to the determinism property of the
language, one can as well turn up the “abstraction dial” to its maximum by making the rewrite rules
RPXL into computational rules. This will result in a faster interpreter, for example. Nevertheless, we are
interested in PLEXIL semantics at the observable level of the micro relation. Therefore, in the rewrite
theory RPXL: (i) the equational theory (ΣPXL,EPXL∪APXL) defines the semantics of the atomic relation
and specifies the serialization procedure for the synchronous semantics of PLEXIL, and (ii) the rewrite
rules RPXL define the semantics of the micro relation.

In this section we assume the reader is familiar with the syntax of Maude [5], which is very close to
standard mathematical notation.

4.1 PLEXIL Syntax

A PLEXIL plan is a tree of nodes representing a hierarchical decomposition of tasks. The interior nodes
in a plan provide the control structure and the leaf nodes represent primitive actions. The purpose of
each node determines its type: List nodes group other nodes and provide scope for local variables,
Assignment nodes assign values to variables (they also have a priority, which serves to solve race
conditions between assignment nodes), Command nodes represent calls to commands, and Empty nodes
do nothing. Each PLEXIL node has gate conditions and check conditions. The former specify when the
node should start executing, when it should finish executing, when it should be repeated, and when it
should be skipped. Check conditions specify flags to detect when node execution fails due to violations
of pre-conditions, post-conditions, or invariants. Declared variables in nodes have lexical scope, that is,
they are accessible to the node and all its descendants, but not siblings or ancestors. The execution status
of a node is given by status such as Inactive, Waiting, Executing, etc. The execution state of a plan
consists of (i) the external state corresponding to a set of environment variables accessed through lookups
on environment variables, and (ii) the internal state which is a set of nodes and (declared) variables.

Figure 1 illustrates with a simple example the standard syntax of PLEXIL. In this particular example,
the plan tasks are represented by the root node SafeDrive, the interior node Loop, and the leaf nodes
OneMeter, TakePic and Counter. OneMeter and TakePic are, for example, nodes of type Command.
The node Counter has two different conditions: Start is a gate condition constraining the execution
of the assignment to start only when the node TakePic is in state Finished, while Pre is a check
condition for the number of pictures to be less than 10. The internal state of the plan at a particular
moment is represented by the set of all nodes of the plan, plus the value of the variable pictures, while
the external state of the plan contains the (external) variable WheelStuck.

The external state of a plan is defined in the functional module EXTERNAL-STATE-SYNTAX. The sort
ExternalState represents sets of elements of sort Pair, each of the form (name,value); we assume that
the sorts Name and Value, specifying names and values, respectively, have been defined previously in
the functional modules NAME and VALUE, respectively.
fmod EXTERNAL-STATE-SYNTAX is

protecting Name . protecting Value .

sort Pair .

op (_,_) : Name Value -> Pair .

sort ExternalState .

subsort Pair < ExternalState .

op mtstate : -> ExternalState .

op _,_ : ExternalState ExternalState -> ExternalState [assoc comm id: mtstate] .

eq ES:ExternalState , ES:ExternalState = ES:ExternalState .

endfm

G. Dowek & C. Muñoz & C. Rocha 85

List SafeDrive {
int pictures = 0;

End:

LookupOnChange(WheelStuck) == true OR pictures == 10;

List Loop {
Repeat-while:

LookupOnChange(WheelStuck) == false;

Command OneMeter {
Command: Drive(1);

}
Command TakePic {

Start: OneMeter.status == FINISHED AND pictures < 10;

Command: TakePicture();

}
Assignment Counter {

Start: TakePic.status == FINISHED;

Pre: pictures < 10;

Assignment: pictures := pictures + 1;

}
}

}

Figure 1: SafeDrive: A PLEXIL Plan Example

The internal state of a plan is represented with the help of Maude’s built-in CONF module supporting
object based programming. The internal state has the structure of a set made up of objects and messages,
called configurations in Maude, where the objects represent the nodes and (declared) variables of a plan.
Therefore, we can view the infrastructure of the internal state as a configuration built up by a binary
set union operator with empty syntax, i.e., juxtaposition, as : Configuration×Configuration−→
Configuration. The operator is declared to satisfy the structural laws of associativity and commuta-
tivity and to have identity mtconf. Objects and messages are singleton set configurations and belong to
subsorts Object,Msg < Configuration, so that more complex configurations are generated out of them
by set union. An object, representing a node or a (declared) variable, in a given configuration is repre-
sented as a term 〈O : C | a1 : v1, . . . ,an : vn〉, where O is the object’s name or identifier (of sort Oid), C is
its class (of sort Cid), the ai’s are the names of the object’s attribute identifiers, and the vi’s are the cor-
responding values. The set of all the attribute-value pairs of an object state (of sort Attribute) is formed
by repeated application of the binary union operator , which also obeys structural laws of associativity,
commutativity, and identity, i.e., the order of the attribute-value pairs of an object is immaterial. The
internal state of a plan is defined in the functional module INTERNAL-STATE-SYNTAX by extending the
sort Configuration; the sorts Exp and Qualified, which we assume to be defined, are used to specify
expressions and qualified names, respectively.

fmod INTERNAL-STATE-SYNTAX is

extending CONFIGURATION . protecting EXP .

protecting QUALIFIED .

subsort Qualified < Oid . --- Qualified elements are object identifiers

ops List Command Assignment Empty : -> Cid . --- Types of nodes

sort Status .

ops Inactive Waiting Executing Finishing Failing Finished IterationEnded Variable : -> ExecState .

sort Outcome .

ops None Success Failure : -> Outcome .

op status: : Status -> Attribute . --- Status of execution

op outcome: : Outcome -> Attribute . --- Outcome of execution

ops start: skip: repeat: end: : Exp -> Attribute . --- Gate conditions

86 Rewriting Logic Semantics of a Plan Execution Language

ops pre: post: inv: : Exp -> Attribute . --- Check conditions

op command: : Exp -> Attribute . --- Command of a command node

op assignment: : Exp -> Attribute . --- Assignment of an assignment node

ops initval actval: Exp -> Attribute . --- Initial and actual values of a variable node

...

endfm

Using the infrastructure in INTERNAL-STATE-SYNTAX, the internal state of SafeDrive in Figure 1, is
represented by the configuration in Figure 2. Observe that the sort Qualified provides qualified names
by means of the operator . : Qualified×Qualified−→Qualified, which we use to maintain the hier-
archical structure of the plans. The dots at the end of each object represent the object’s attributes that
are not explicitly defined by the plan but that are always present in each node such as the status or the
outcome. There is a “compilation procedure” from PLEXIL plans to their corresponding representation
in Maude, that we do not discuss in this paper, which includes all implicit elements of a node as attributes
of the object representation of the node.

< SafeDrive : List | end: LookupOnChange(WheelStuck) == true OR pictures == 10, ... >

< Loop . SafeDrive : List | repeat: LookupOnChange(WheelStuck) == false , ... >

< OneMetter . Loop . SafeDrive : Command | command: Drive(1), ... >

< TakePic . Loop . SafeDrive : Command | start: OneMeter.Status == Finished and pictures < 10,

command: TakePicture(), ... >

< Counter . Loop . SafeDrive : Assignment | pre: pictures < 10,

assignment: pictures := pictures + 1, ... >

< pictures . SafeDrive : Memory | initval: 0, actval: 0 >

Figure 2: SafeDrive in RPXL

We are now ready to define the sort State representing the execution state of the plans in the func-
tional module STATE-SYNTAX, by importing the syntax of external and internal states:

fmod STATE-SYNTAX is

pr EXTERNAL-STATE-SYNTAX .

pr INTERNAL-STATE-SYNTAX .

sort State .

op _|-_ : ExternalState Configuration -> State .

endfm

We adopt the syntax Γ` π to represent the execution state of the plans, where Γ and π are the external
and internal states, respectively.

4.2 PLEXIL Semantics

PLEXIL execution is driven by external events. The set of events includes events related to lookup in
conditions, e.g., changes in the value of an external state that affects a gate condition, acknowledgments
that a command has been initialized, reception of a value returned by a command, etc. We focus on the
execution semantics of PLEXIL specified in terms of node states and transitions between node states
that are triggered by condition changes (atomic relation) and its synchronous closure under the maximal
redexes strategy (micro relation). PLEXIL’s atomic relation consists of 42 rules, indexed by the type and
the execution status of nodes into a dozen groups. Each group associates a priority to its set of rules
which defines a linear order on the set of rules.

The atomic relation is defined by (Γ,π) ` P −→a P′, where P ⊆ π . For instance, the four atomic
rules corresponding to the transitions from Executing for nodes of type Assignment are depicted in

G. Dowek & C. Muñoz & C. Rocha 87

Figure 3. Rule r3 updates the status and the outcome of node A to the values IterationEnded and
Success, respectively, and the variable x to the value v, i.e., the value of the expression e in the state π ,
whenever the expressions associated with the gate condition End and the check condition Post of node A
both evaluate to true in π . In rule r1, AncInv(A) is a predicate, parametric in the name of nodes, stating
that none of the ancestors of A has changed the value associated with its invariant condition to false.
The value ⊥ represents the special value “Unknown”. We use (Γ,π) ` e ; v to denote that expression e
evaluates to value v in state Γ ` π; by abuse of notation, we write (Γ,π) ` e 6; v to denote that expression
e does not evaluate to value v in (Γ,π).

(Γ,π) ` AncInv(A); false A.body = x := e

A.type= Assignment A.status= Executing

(Γ,π) ` Node A−→a Node A with [status= Finished , outcome= Failure , x=⊥]
r1

(Γ,π) ` A.Invariant; false A.body = x := e

A.type= Assignment A.status= Executing

(Γ,π) ` Node A−→a Node A with [status= IterationEnded , outcome= Failure , x=⊥]
r2

(Γ,π) ` A.End; true A.body = x := e

(Γ,π) ` A.Post; true (Γ,π) ` e; v

A.type= Assignment A.status= Executing

(Γ,π) ` Node A−→a Node A with [status= IterationEnded , outcome= Success , x= v]
r3

(Γ,π) ` A.End; true (Γ,π) ` A.Post 6; true

A.type= Assignment A.status= Executing

(Γ,π) ` Node A−→a Node A with [status= IterationEnded , outcome= Failure]
r4

{r4 < r3 < r2 < r1}

Figure 3: Atomic rules corresponding to the transitions from Executing for nodes of type Assignment

The relation r < s between the labels of two different rules specifies that the rule r is only applied
when the second rule s cannot be applied. That is, the binary relation on rules defines the order of their
application when deriving atomic transitions. So, a rule r can be used to derive an atomic transition if
all its premises are valid and no rule higher than r (in its group) is applicable. In the case of PLEXIL’s
atomic relation, the binary relation < on rules is a linear ordering. This linearity is key to the determinism
of PLEXIL (see [8]).

The micro relation Γ ` π −→m π ′, the synchronous closure of the atomic relation under the maximal
redexes strategy, is defined as:

(Γ,π) ` P1 −→a P′1
. . .

(Γ,π) ` Pn −→a P′n
Γ ` π −→m (π \

⋃
1≤i≤n

Pi) ∪
⋃

1≤i≤n

P′i
MICRO

where Mπ = {P1, . . . ,Pn} is the set of nodes and variables in π that are affected by the micro relation.
If two different processes in π , say A and B, write to the same variable, only the update of the pro-
cess with higher priority is considered (assignment nodes have an associated priority always), e.g., A if
A.priority > B.priority, B if B.priority > A.priority, and none otherwise.

88 Rewriting Logic Semantics of a Plan Execution Language

In order to specify the PLEXIL semantics in Maude, we first define the infrastructure for the serial-
ization procedure in the functional module SERIALIZATION-INFRASTRUCTURE.
fmod SERIALIZATION-INFRASTRUCTURE is

inc STATE-SYNTAX .

...

op [_:_|_] : Oid Cid AttributeSet -> Object . --- New syntactic sugar for objects

op updateStatus : Qualified Status -> Msg . --- Update status message

op updateOutcome : Qualified Outcome -> Msg . --- Update outcome message

op updateVariable : Qualified Value -> Msg . --- Update variable message

...

ops applyUpdates unprime : State -> State . --- Application of updates and ‘unpriming’

var Γ : ExternalState . var π : InternalState . var A : Oid . var C : Cid .

var Att : AttributeSet . vars S S’ : Status . var St : State .

eq applyUpdates(Γ ` [A : C | status: S , Att] updateStatus(A , S’) π)

= applyUpdates(Γ ` [A : C | status: S’ , Att] π) .

...

eq applyUpdates(St) = St [owise] .

eq unprime(Γ ` [A : C | Att] π) = unprime(Γ ` < A : C | Att > π) .

eq unprime(St) = St [owise] .

endfm

Following the idea of the serialization procedure, we distinguish between unprimed and primed
redexes by using syntactic sugar for denoting objects in the Maude specification: unprimed redexes
are identified with the already defined syntax for objects in the form of 〈O : C | ...〉 and primed re-
dexes are identified with the new syntax for objects in the form of [O : C | ...]. We use messages,
i.e., elements in the sort Msg, to denote the update actions associated with the reduction rules for
the atomic relation; we accumulate these messages in the internal state of the execution state of the
plans, i.e., we also use the internal state in the spirit of the log book of the serialization procedure.
For example, the configuration updateStatus(A,IterationEnded) updateOutcome(A,Success)

updateVariable(x,v) corresponds to the update actions in the conclusion of rule r3 in Figure 3. The
functions applyUpdates and unprimes apply all the collected updates in the internal state, and “un-
primes” the “primed” nodes, respectively. In the specification above, it is shown how the status of a node
is updated and how primed nodes become unprimed.

We give the equational serialization procedure in the general setting in which we consider a linear
ordering on the rules.

Equational serialization procedure (with priorities) Let

{ri : (Γ,π) ` Node A −→a Node A with [updatesi] i f Ci}1≤i≤n

be the collection of atomic rules (in horizontal notation) defining the transition relation for nodes of
type T in status S, with rn < · · · < ri < · · · < r1, where updatesi is the set of update actions (the
order in the update actions is irrelevant) in the conclusion of ri and Ci is the set of premises of ri. The
equational serialization procedure is given by the following set of equations, in Maude notation, defining
the function symbol, say, r:

var Γ : ExternalState . var A : Oid . var S : Status .

var π : Configuration . var T : Cid . var Attr : AttributeSet .

op r : State -> State .

eq r(Γ ` < A : T | status: S , Attr > π)

= if C1 == true then r(Γ ` [A : T | status: S , Attr] messages(updates1) π)

else if C2 == true

... else if Cn == true then r(Γ ` [A : T | status: S , Attr] messages(updatesn) π)

else r(Γ ` [A : T | status: S , Attr] π) fi

fi ...

fi .

eq r(Γ ` π) = Γ ` π [owise] .

G. Dowek & C. Muñoz & C. Rocha 89

where messages(updadatesi) represents the message configuration associated with the update actions
in the conclusion of rule ri.

The equational serialization procedure defines a fresh function symbol, say, r : State−→ State. The
first equation for r tries to apply the atomic rules in the given order, by first evaluating the condition
and then marking the affected node. If the condition evaluates to true, then update messages are gener-
ated. The second equation, removes the function symbol r when there aren’t any more possible atomic
reductions with the rules {ri}.

The atomic relation is defined in the functional module ATOMIC-RELATION by instantiating the equa-
tional serialization procedure for each one of the twelve groups of atomic rules with a different function
symbol for each one.

Finally, the micro relation is defined by the rule micro in the system module PLEXIL-RLS, which
materializes the rewrite theory RPXL in Maude:

mod PLEXIL-RLS is

pr ATOMIC-RELATION .

pr SERIALIZATION-INFRASTRUCTURE .

rl [micro] : Γ ` π => Γ ` unprime(applyUpdates(a1(...a12(Γ ` π)...))) .

endm

where a1, . . . ,a12 are the function symbols in ATOMIC-RELATION defining the serialization procedure
for each one of the twelve groups of rules.

5 Preliminary Results

We have used RPXL to validate the semantics of PLEXIL against a wide variety of plan examples. We
report on the following two issues of the original PLEXIL semantics that were discovered with the help
of RPXL:

1. Non-atomicity of the atomic relation. A prior version of the atomic rules r3 and r4 for Assignment
nodes in state Executing, presented in Figure 3, introduced an undesired interleaving semantics
for variable assignments, which invalidated the synchronous nature of the language.

2. Spurious non-termination of plans. Due to lack of detail in the original specification of some
predicates, there were cases in which some transitions for List nodes in state IterationEnded

would lead to spurious infinite loops.

Although the formal operational semantics of PLEXIL in [8] has been used to prove several prop-
erties of PLEXIL, neither one of the issues was previously found. As as matter of fact, these issues do
not compromise any of the proven properties of the language. Solutions to both issues were provided
by the authors, and have been adopted in the latest version of the formal PLEXIL semantics. We are
currently using RPXL as the formal interpreter of PLEXIL’s Formal Interactive Visual Environment [15]
(PLEXIL5), a prototype graphical environment that enables step-by-step execution of plans for scripted
sequence of external events, for further validation of the language’s intended semantics.

We have also developed a variant of RPXL in which the serialization procedure was implemented
with rewrite rules, instead of equations, and rewrite strategies. In general, RPXL outperforms that variant
by two orders of magnitude on average, and by three orders of magnitude in some extreme cases.

The rewrite theory RPXL has approximately 1000 lines of code, of which 308 lines correspond to the
module ATOMIC-RELATION. The rest corresponds to the syntax and infrastructure specifications.

90 Rewriting Logic Semantics of a Plan Execution Language

6 Related Work and Conclusion

Rewriting logic has been used previously as a testbed for specifying and animating the semantics of
synchronous languages. M. AlTurki and J. Meseguer [1] have studied the rewriting logic semantics of
the language Orc, which includes a synchronous reduction relation. T. Serbanuta et al. [17] define the
execution of P-systems with structured data with continuations. The focus of the former is to use rewrit-
ing logic to study the (mainly) non-deterministic behavior of Orc programs, while the focus of the latter
is to study the relationship between P-systems and the existing continuation framework for enriching
each with the strong features of the other. Our approach is based more on exploiting the determinism of
a synchronous relation to tackle the problem associated with the interleaving semantics of concurrency
in rewriting logic. P. Lucanu [10] studies the problem of the interleaving semantics of concurrency in
rewriting logic for synchronous systems from the perspective of P-systems. The determinism property
of the synchronous language Esterel [2] was formally proven by O. Tardieu in [18].

We have presented a rewriting logic semantics of PLEXIL, a synchronous plan execution language
developed by NASA to support autonomous spacecraft operations. The rewriting logic specification, a
formal interpreter and a semantic benchmark for validating the semantics of the language, relies on the
determinism of PLEXIL’s atomic relation and a serialization procedure that enables the specification of
a synchronous relation in an asynchronous computational model. Two issues in the original design of
PLEXIL were found with the help of the rewriting logic specification of the language: (i) there was an
atomic rule with the potential to violate the atomicity of the atomic relation, thus voiding the synchronous
nature of the language, and (ii) a set of rules introducing spurious non-terminating executions of plans.
We proposed solutions to these issues that were integrated into the current semantics of the language.

Although we have focused on PLEXIL, the formal framework that we have developed is presented
in a general setting of abstract set relations. In particular, we think that this framework can be applied
to other deterministic synchronous languages. To the best of our knowledge there was no mechanized
library of abstract set relations suitable for the definition and verification of synchronous relations; nei-
ther was there a soundness and completeness proof of a serialization procedure for the simulation of
synchronous relations by rewrite systems.

To summarize, we view this work as (i) a step forward in bringing the use of formal methods closer
to practice, (ii) a contribution to the modular and mechanized study of semantic relations, and (iii) yet
another, but interesting contribution to the rewriting logic semantics project.

We intend to continue our collaborative work with PLEXIL development team with the goal of ar-
riving at a formal environment for the validation of PLEXIL. Such an environment would provide a
rich formal tool to PLEXIL enthusiasts for the experimentation, analysis and verification of PLEXIL
programs, which could then be extended towards a rewriting-based PLEXIL implementation with as-
sociated analysis tools. Part of our future work is also to investigate the modularity of the equational
serialization procedure with prioritized rules.

Acknowledgments. This work was supported by the National Aeronautics and Space Administration
at Langley Research Center under the Research Cooperative Agreement No. NCC-1-02043 awarded
to the National Institute of Aerospace, while the second author was resident at this institute. The third
author was partially supported by NSF Grant IIS 07-20482. The authors would like to thank the members
of the NASA’s Automation for Operation (A4O) project and, especially, the PLEXIL development team
led by Michael Dalal at NASA Ames, for their technical support.

G. Dowek & C. Muñoz & C. Rocha 91

References
[1] M. AlTurki & J. Meseguer (2008): Reduction Semantics and Formal Analysis of Orc Programs. Electr. Notes

Theor. Comput. Sci. 200(3), pp. 25–41.
[2] G. Berry (2000): The Foundations of Esterel. In: Proof, Language and Interaction: Essays in Honour of

Robin Milner. MIT Press, Cambridge, MA, USA, pp. 425–454.
[3] R. Bruni & J. Meseguer (2006): Semantic foundations for generalized rewrite theories. Theor. Comput. Sci.

360(1-3), pp. 386–414. Available at http://dx.doi.org/10.1016/j.tcs.2006.04.012.
[4] P. Caspi, D. Pilaud, N. Halbwachs & J. A. Plaice (1987): LUSTRE: a declarative language for real-time

programming. In: POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages. ACM, New York, NY, USA, pp. 178–188.

[5] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martı́-Oliet & C. Talcott (2007): All About Maude
- A High-Performance Logical Framework. Springer LNCS Vol. 4350, 1st edition.

[6] N. Dershowitz & J. P. Jouannaud (1990): Rewrite Systems. In: Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B). The MIT Press, pp. 243–320.

[7] G. Dowek, C. Muñoz & C. Păsăreanu (2007): A Formal Analysis Framework for PLEXIL. In: Proceedings
of 3rd Workshop on Planning and Plan Execution for Real-World Systems. pp. 45–51.

[8] G. Dowek, C. Muñoz & C. Păsăreanu (2008): A Small-Step Semantics OF PLEXIL. Technical Report 2008-
11, National Institute of Aerospace, Hampton, VA.

[9] T. Estlin, A. Jónsson, C. Păsăreanu, R. Simmons, K. Tso & V. Verna (2006): Plan Execution Interchange
Language (PLEXIL). Technical Memorandum TM-2006-213483, NASA.

[10] D. Lucanu (2009): Strategy-Based Rewrite Semantics for Membrane Systems Preserves Maximal Concur-
rency of Evolution Rule Actions. Electr. Notes Theor. Comput. Sci. 237, pp. 107–125.

[11] J. Meseguer (1992): Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical Computer
Science 96(1), pp. 73–155.

[12] J. Meseguer & G. Rosu (2007): The rewriting logic semantics project. Theor. Comput. Sci. 373(3), pp.
213–237. Available at http://dx.doi.org/10.1016/j.tcs.2006.12.018.

[13] S. Owre, J. Rushby & N. Shankar (1992): PVS: A Prototype Verification System. In: Deepak Kapur, editor:
11th International Conference on Automated Deduction (CADE), Lecture Notes in Artificial Intelligence
607. Springer-Verlag, Saratoga, NY, pp. 748–752.

[14] G. D. Plotkin (2004): A structural approach to operational semantics. J. Log. Alg. Prog. 60-61, pp. 17–139.
[15] C. Rocha, C. Muñoz & H. Cadavid (2009): A Graphical Environment for the Semantic Validation of a

Plan Execution Language. IEEE International Conference on Space Mission Challenges for Information
Technology 0, pp. 201–207.

[16] T. Serbanuta, G. Rosu & J. Meseguer (2009): A rewriting logic approach to operational semantics. Inf.
Comput. 207(2), pp. 305–340.

[17] T. Serbanuta, G. Stefanescu & G. Rosu (2008): Defining and Executing P Systems with Structured Data in
K. In: David W. Corne, Pierluigi Frisco, Gheorghe Paun, Grzegorz Rozenberg & Arto Salomaa, editors:
Workshop on Membrane Computing, Lecture Notes in Computer Science 5391. Springer, pp. 374–393.

[18] O. Tardieu (2007): A deterministic logical semantics for pure Esterel. ACM Trans. Program. Lang. Syst.
29(2), p. 8.

[19] A. Verdejo & N. Martı́-Oliet (2006): Executable structural operational semantics in Maude. J. Log. Algebr.
Program. 67(1-2), pp. 226–293.

[20] V. Verna, A. Jónsson, C. Păsăreanu & M. Latauro (2006): Universal Executive and PLEXIL: Engine and
Language for Robust Spacecraft Control and Operations. In: Proceedings of the American Institute of
Aeronautics and Astronautics Space Conference.

[21] P. Viry (2002): Equational rules for rewriting logic. Theoretical Computer Science 285, pp. 487–517.

http://dx.doi.org/10.1016/j.tcs.2006.04.012
http://dx.doi.org/10.1016/j.tcs.2006.12.018

	1 Introduction
	2 Rewriting Logic and Structural Operational Semantics
	3 A Rewriting Library for Synchronous Relations
	3.1 Set Relations and Determinism
	3.2 Executing Semantic Relations

	4 Rewriting Logic Semantics of PLEXIL
	4.1 PLEXIL Syntax
	4.2 PLEXIL Semantics

	5 Preliminary Results
	6 Related Work and Conclusion

